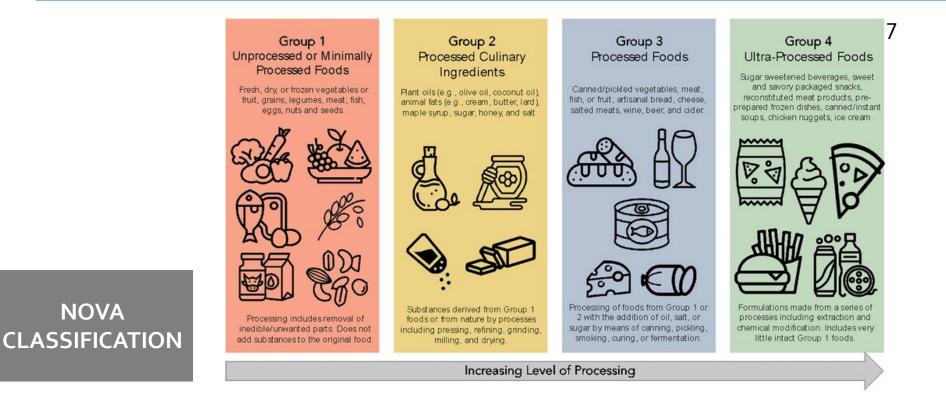
Examining the Relationship Between Ultraprocessed Food Consumption and Cardiometabolic Outcomes in Canadians

Angelina Baric 16 May 2024 Dr. Anthea Christoforou Department of Kinesiology Faculty of Science McMaster University


Health of Canadian Adults

- 9 in 10 Canadians have at least one risk factor for cardiovascular disease or stroke1
- 1 in 5 Canadians have metabolic syndrome in 2010²
- 1 in 3 Canadians are obese in 2022³
- A considerable number of deaths could be averted or delayed if Canadians adhered to dietary recommendations⁴
- Over half of total energy intake came from ultra-processed food (UPF) sources for Canadians in 2015 and was associated with poorer diet quality and increased energy intake^{5,6}

Ultra-Processed Foods

NOVA

Multi-ingredient, industrially formulated, and contain little to no whole foods⁵

Ultra-Processed Foods

Prior research from the 2015 Canadian Community Health Survey – Nutrition (CCHS-N) has demonstrated an **association between UPF and disease status**⁸

Ultra-Processed Foods

Research from other jurisdictions has begun to implicate **UPF in the rise** of poor cardiometabolic profiles.^{9,10}

UPF Consumption Body Composition Blood Pressure Inflammatory Markers Lipid Profiles Glycemic Markers

Objective: examine the relationships between UPF consumption and cardiometabolic health using a nationally representative sample of Canadians

Methods: CHMS

Canadian Health Measures Survey (CHMS)

Health history, health-related lifestyle behaviours, biomarkers of health

<u>Sample</u>: Canadians aged **3-79** living in the 10 provinces

<u>Exclusion Criteria</u>: persons living on Aboriginal reserves, full-time members of the Canadian forces, residents of certain remote regions

<u>Sampling Strategy</u>: stratified three-stage sample, with one or two individuals randomly selected from each dwelling in a selected site

Cycle 5 (2016/2017) and Cycle 6 (2018/2019)

▶ n=6517

Methods: CHMS

Canadian Health Measures Survey (CHMS)

Household questionnaire: sociodemographic variables, lifestyle behaviours, movement behaviours, general health/disease status, dietary data

Clinic visit: anthropometric measures, blood pressure and heart rate, blood samples, urine samples, fitness testing, accelerometry

Methods: Data

- 1. Dietary data collected by **food frequency** questionnaire
- 2. NOVA classification to classify foods as **UPF or not**
- 3. Number of **UPF servings per day** arranged into **quartiles**

Predictor Variables

Body mass index (BMI)

Self-rated health

Systolic BP (SBP), diastolic BP (DBP)

Total cholesterol (TC), high-density lipoprotein (HDL), TC:HDL, glucose, HBA1C, c-reactive protein (CRP), white blood cell (WBC)

Fasting subsample: triglycerides (TAG), low-density lipoprotein (LDL)

Outcome Variables

Age, sex, race, highest level of household education, household income (quartiles)

mCAFT score

BMI

Confounding Variables

Statistical Analyses

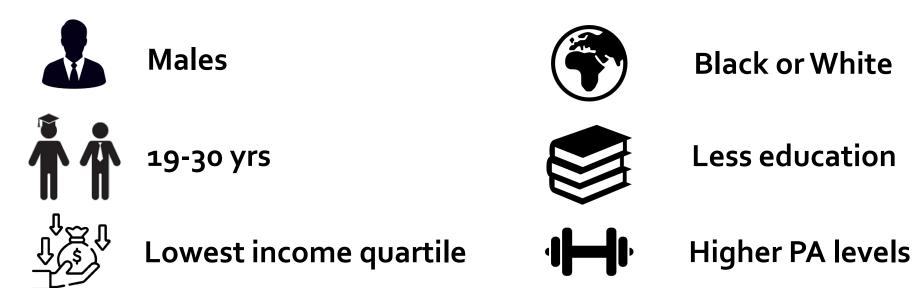
TO ASSESS DIFFERENCES BETWEEN QUARTILES OF UPF:

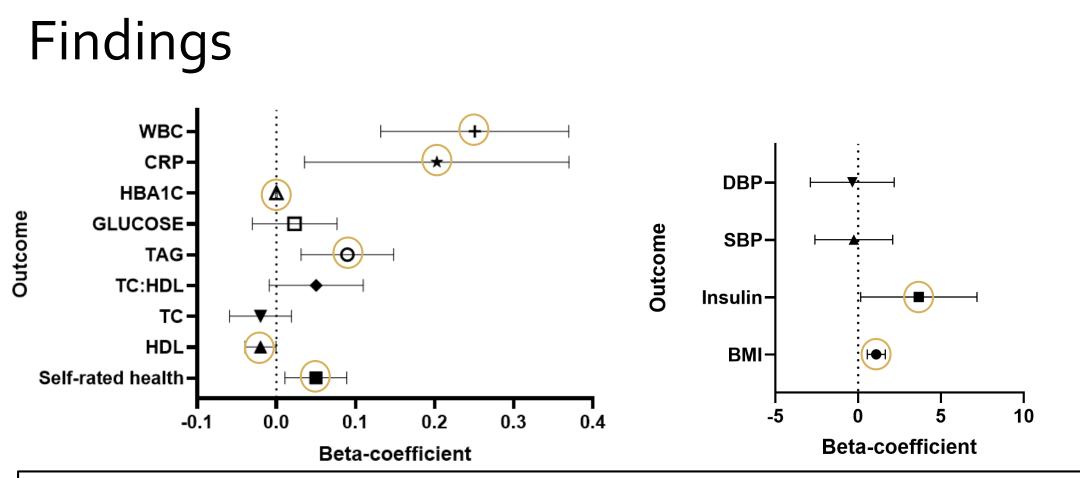
Chi-square tests for categorical outcomes

ANOVA for continuous outcomes

TO ASSESS THE **ASSOCIATION BETWEEN OUTCOMES AND UPF** QUARTILES:

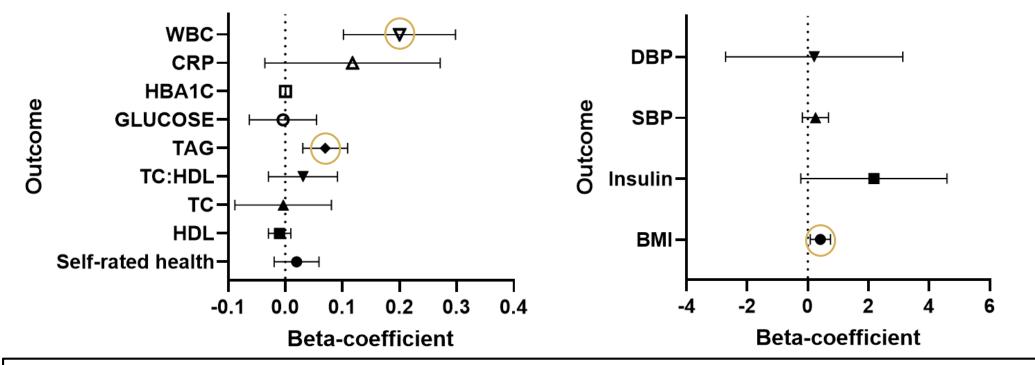
Multivariable linear regression


Controlling for: age, sex, income quartile, education, race, BMI (for non-BMI variables), fitness


*all analyses were weighted and bootstrapped using combined C5/6 weight file.

Findings

<u>UPF servings per day:</u> **1.2** in the LOWEST quartile and **5.8** in the HIGHEST quartile


Higher UPF consumption among:

Figures 1 & 2: Forest plot displaying beta-coefficients for linear regression of UPF quartiles and health outcomes after adjustment for age, sex, income, race, and education

Findings

Figures 3 & 4: Forest plot displaying beta-coefficients for linear regression of UPF quartiles and health outcomes after adjustment for age, sex, income, race, education, BMI, and fitness

Discussion

Increasing quartiles of UPF consumption are associated with significantly higher BMI, TAG, fasting insulin, HbA1C, CRP, WBC and lower self-rated health and HDL.

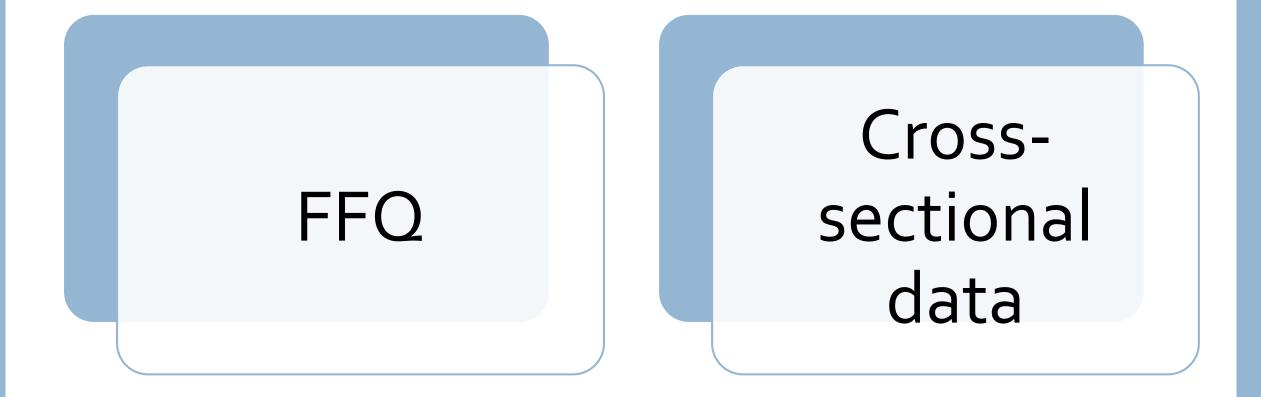
Most are likely explained by **poor nutrient content**¹²

WBC and CRP are an indication of inflammation – detecting invaders!!!¹³

link to other health outcomes?¹⁴

Although not significant, there is an increasing trend for **glucose and TC:HDL** across increasing UPF quartiles.

BMI and **fitness** may play **mediating** and **moderating** roles in the development of poor health outcomes with increasing UPF consumption.


Significance and Implications

ngs will serve to inform **C**

These findings will provide important **perspectives** inform current **recommendations and guidelines** for leading healthy lifestyles. These findings will serve to inform **Canadian food policies** which have so far focused on **restricting single nutrients** of public health concern.

Limitations

References

- 1. Connected by the numbers. Heart and Stroke Foundation of Canada. Accessed May 12, 2024. https://www.heartandstroke.ca/en/articles/connected-by-the-numbers/
- 2. Setayeshgar S, Whiting SJ, Vatanparast H. Metabolic syndrome in canadian adults and adolescents: prevalence and associated dietary intake. *ISRN Obes*. 2012;2012:816846. Published 2012 Nov 20. doi:10.5402/2012/816846
- 3. Government of Canada SC. An overview of weight and height measurements on World Obesity Day. Published March 4, 2024. Accessed May 12, 2024. <u>https://www.statcan.gc.ca/o1/en/plus/5742-overview-weight-and-height-measurements-world-obesity-day</u>
- 4. Bélanger M, Poirier M, Jbilou J, Scarborough P. Modelling the impact of compliance with dietary recommendations on cancer and cardiovascular disease mortality in Canada. *Public Health*. 2014;128(3):222-230. doi:10.1016/j.puhe.2013.11.003
- 5. Polsky JY, Moubarac JC, Garriguet D. Consumption of ultra-processed foods in Canada. Health Rep. 2020;31(11):3-15. doi:10.25318/82-003-x202001100001-eng
- 6. Moubarac JC, Batal M, Louzada ML, Martinez Steele E, Monteiro CA. Consumption of ultraprocessed foods predicts diet quality in Canada. *Appetite*. 2017;108:512-520. doi:10.1016/j.appet.2016.11.006
- 7. Crimarco A, Landry MJ, Gardner CD. Ultra-processed Foods, Weight Gain, and Co-morbidity Risk. Curr Obes Rep. 2022;11(3):80-92. doi:10.1007/s13679-021-00460-y
- 8. Nardocci M, Polsky JY, Moubarac JC. Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. *Can J Public Health*. 2021;112(3):421-429. doi:10.17269/s41997-020-00429-9
- Mambrini SP, Menichetti F, Ravella S, et al. Ultra-Processed Food Consumption and Incidence of Obesity and Cardiometabolic Risk Factors in Adults: A Systematic Review of Prospective Studies. *Nutrients*. 2023;15(11):2583.
 Published 2023 May 31. doi:10.3390/nu15112583
- 10. Pagliai G, Dinu M, Madarena MP, Bonaccio M, Iacoviello L, Sofi F. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. *British Journal of Nutrition*. 2021;125(3):308-318. doi:10.1017/S0007114520002688
- 11. Government of Canada SC. Canadian health measures survey (CHMS). Government of Canada, Statistics Canada. June 28, 2023. Accessed November 28, 2023. https://www.statcan.gc.ca/en/survey/household/5071.
- 12. Poti JM, Braga B, Qin B. Ultra-processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content?. Curr Obes Rep. 2017;6(4):420-431. doi:10.1007/s13679-017-0285-4
- 13. Tristan Asensi M, Napoletano A, Sofi F, Dinu M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients. 2023;15(6):1546. Published 2023 Mar 22. doi:10.3390/nu15061546
- 14. Contreras-Rodriguez O, Reales-Moreno M, Fernández-Barrès S, et al. Consumption of ultra-processed foods is associated with depression, mesocorticolimbic volume, and inflammation. *J Affect Disord*. 2023;335:340-348. doi:10.1016/j.jad.2023.05.009