RDC reproducibility

Grant Gibson, AD Research & Evaluation - CRDCN

CRDCN and McMaster University

Date: 2024-05-15

Intro & Motivation

- Growing scope of reproducibility interest generally
- Pressures can come from funders, journals, universities, supervisors
- Not a lot of comprehensive, accessible resources either within or across disciplines

Reproducibility

- Using definition B1 from Barba(2018)¹ "Reproducibility" refers to instances in which the original researcher's data and computer codes are used to regenerate the results, while "replicability" refers to instances in which a researcher collects new data to arrive at the same scientific findings as a previous study.
- If a study is reproducible it makes it *dramatically* easier to replicate so these two concepts are obviously intertwined.

¹Barba, Lorena A. "Terminologies for reproducible research." arXiv preprint arXiv:1802.03311 (2018).

2 key elements

- Finding and using the data from the original study
- Very thorough documentation of procedures & decisions made during the analysis (also findable)

1. Finding and using the data from the original study (normally)

Deposit and/or cite data with a PID (doi or similar)

1. Finding and using the data from the original study (RDC)

- This is the hardest part because you don't have control.
- Updates not documented using numbers or persistent identifiers, not always recoverable

- Make sure you cite your data with the Date (see How to Cite Statistics Canada Products). Or, more usefully Citation of Datasets
- Prepare a data accessibility statement

2. Very thorough documentation of procedures & decisions

- This one is on you.
- Concept of computational reproducibility, push-button reproducibility
- Structuring your files

RDC reproducibility

2a. RDC-specific issues with procedures documentation

- You likely have a trail of files related to disclosure requests, intermediate disclosures frustrate the process.
- Your code can be released as part of the disclosure request IF you don't have anything confidential in it.
- This will be intuitive for people who use R or Python, simply use intermediate objects:

```
inc_sd<-sd(income)
inc_mean<-mean(income)
inc_CV<- (inc_sd/inc_mean)</pre>
```

then put in inc_CV rather than ever using a numeric expression. Makes it easier if your data gets updated, and disclosure-friendly.

2a. RDC-specific issues with procedures documentation

 In Stata, you can assign things from the rreturn or ereturn following a command to a local or global macro. (see my Stata Training ->Varia/Using Stored Values for more info)

3. What happens next

- Gather your data accessibility statement and statistical code in one place once you have your final result. Publish them to a dataverse. The journal in which you publish may have one, but if not, you can use the one from McMaster.
- See an example from an RDC project using the LFS.
- Note that you will need to create a Readme that explains the contents of your repository and how the files interact.
- Now you can reference this item in your article work with the journal to do this or include it in your references. Reference your article in your repository.

RDM within the RDCs

- It's not like it used to be: Info Management policies have changed
- Storage limitations in the RDCs and eventually in vRDC = no viable long-term storage/archival option
- Generally think that you have 5-6 years from project inception for data storage.
 - So even if you want to re-use your code for a follow-up project, make sure you have a copy of your code.

Software within the RDCs

- Also not up to you, but versioning info is visible to you and should be recorded.
 - Most tools require you to have control over your file system, or make use of a cloud environment. Can't use checkpoint, can't bundle using renv, other plugins are generally not useful (repado for example).
 - Many RDC projects are multi-software.

Example for these slides

```
E.g. in R-studio I'm using RStudio 2024.04.0+735 "Chocolate
Cosmos" Release (a00d0e775dbc93e0d79a1bf474e3e8e8de677383,
2024-04-24) for windows Mozilla/5.0 (Windows NT 10.0; Win64;
x64) AppleWebKit/537.36 (KHTML, like Gecko)
RStudio/2024.04.0+735 Chrome/120.0.6099.291 Electron/28.2.6
Safari/537.36, Quarto 1.4.553 (Copied form Help/About RStudio)
and knitr 1.46; rmarkdown 2.26
cat("R version:", R.version$version.string, "\n")
## R version: R version 4.4.0 (2024-04-24 ucrt)
```

Platform: x86_64-w64-mingw32

cat("Platform:", R.version\$platform, "\n")

Final note for 'push button' reproducibility

- Take care to make sure that the code produces the results exactly.
- For survey data, this means you ought to rerun all the code one time at the end in sequence.
- If this isn't feasible with a big admin database you need to be better disciplined. You can use logs, a date last run line in your code, or any other mechanism to make sure things are happening in the right sequence.
- Make use of the random number generator and set the seed appropriately (no more than once per problem).

More info (links)

- Content from my Reproducibility & RDM module
- Reproducibility checklist
- Renv on GitHub can be used with Python if using reticulate.